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Abstract
A novel approach is proposed to the distribution of spacings between zeros of
the Riemann zeta function. Starting from the observation that the spacing
distribution for zeros near the real axis is sharper than the asymptotic
distribution, and that all computed moments grow monotonically as zeros are
computed farther and farther away from �(z) = 0, an analogy with relaxation
to equilibrium in a statistical system is drawn. Namely, it is conjectured that
the spacing distribution evolves in a fictitious time t = √

log10 T , where T
is the zeros’ imaginary part, in the same way as the eigenvalues of a random
matrix with mixed GUE and GSE symmetries. The time evolution restores
asymptotically (at T → ∞) the GUE symmetry. Dyson’s Brownian motion
model for the eigenvalues of a random matrix is used for describing the time
evolution, and an approximate, analytic description of the spacing distribution
is conjectured, valid to first order in exp(−t).

PACS numbers: 02.30.Gp, 02.30.Ik, 02.10.Yn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

If it is true that mathematics is the language of physics, it may happen that physics hold the
key to a difficult mathematical problem. One of these rare instances seems to be the proof
of Riemann’s conjecture. The connection between physics and mathematics is provided in
this case by random matrix theory (RMT) [1], a statistical theory devised for describing the
fluctuation properties of complex nuclear spectra, and that has found an application in several
fields of physics.

Riemann’s conjecture states that the nontrivial zeros of the so-called Riemann zeta
function, ζ(z), are all of the form zn = 1/2 + iTn [2]. In pursuing a proof of the conjecture,
billions of zeros have been computed numerically [3]. Besides lending support to the
conjecture, knowledge of the zeros allows one to investigate their statistical properties, as
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Figure 1. The distribution of zero spacings (open circles) plotted together with the asymptotic
GUE distribution of consecutive eigenvalue spacings (solid line).

a function of the ‘height’ T along the imaginary axis �(z) = 1/2. In a tea-time discussion
with F Dyson in Princeton, H Montgomery learned that the zeros share the asymptotic, T → ∞
form of their pair correlation function, with the N → ∞ limit of the eigenvalue correlation
function of N × N unitary random matrices [4]. Note that, although mathematicians usually
prefer referring to the circular ensemble of unitary matrices (CUE), I will follow here the
use, more common among physicists, of the notation GUE, that refers to the Gaussian unitary
ensemble. The asymptotic pair correlation function of eigenvalues is identical for CUE and
GUE matrices [1].

Following Montgomery’s conjecture, the relations between the statistical properties of the
zeros of the zeta function and those of the eigenvalues of random matrices have been intensely
studied. For instance, figure 1 shows the distribution of the spacings between consecutive
zeros computed around T = 1016 [3], rescaled in such a way as to have unit mean. The solid
line is the prediction from RMT for unitary random matrices (GUE). The agreement is visually
excellent. However, a non-vanishing difference exists between the asymptotic, N → ∞ GUE
distribution of RMT and the finite-T result for the zeros. As Odlyzko discovered numerically
[5], such a difference has a precise structure, which one should be able to predict.

This communication addresses such a prediction from physical and computational
perspectives. It will be argued that the distribution of zero spacings (DZS) tends to its
asymptotic form in a way which is described by Dyson’s Brownian motion model [6],
and which is indeed akin to relaxation to equilibrium in statistical physics. I shall show
numerically that such relaxation takes place as a function of a fictitious time t = (log10 T )1/2.
As will be appreciated, the present argument is entirely heuristic—as a physicist, I would say
phenomenological. It is based on an approximate treatment of the spacing distribution, which
fits numerical results. Nevertheless, the numerical evidence discussed here shows that the use
of Dyson’s Brownian motion model for capturing the corrections to asymptotics of the zeros
of Riemann zeta function is well founded, and very promising.

2. The DZS at finite T: corrections to asymptotic behaviour

An extensive numerical study of the statistical properties of zeros ‘high up’ along the T-axis
has been reported on his website by Xavier Gourdon [7], who computed the first 1013 zeros,
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Figure 2. The difference between the zero spacing distribution Pζ (s, T ) and the asymptotic GUE
distribution, at various T (from [7]).

Figure 3. The values of the variance σ 2(T ) of Pζ (s, T ) as computed in [7] (solid circles), plotted
as a function of log10(T ). The horizontal straight line marks the value σ 2

2 = 0.1781 of the variance
of the Wigner surmise for β = 2. Inset: the variance σ 2(T ) plotted as a function of

√
log10(T ).

The thin continuous curve (blue online) is a fit to equation (3).

and then investigated the DZS for values of the imaginary part T between 1013 and 1024. I
will use two results of that study: the first one is the graph of the differences between the
DZS at various values of T , Pζ (s, T ), and the asymptotic GUE distribution, PGUE(s). The
variable s is the spacing divided by its T-dependent mean value. The second result I will use
is the list of the computed values of the variance of Pζ (s, T ) as a function of T. Figure 2,
taken from [7], shows the evolution of Pζ (s, T )−PGUE(s) at different Ts. Figure 3 depicts the
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variance of the DZS as a function of log10 T (for typographical convenience). For future use,
the horizontal straight line in figure 3 marks the variance of the Wigner surmise. The latter is
the exact distribution of the eigenvalues of a random 2 × 2 unitary matrix and it is known to
be an excellent approximation for PGUE(s), as well. As a reminder, the Wigner surmise P2(s)

for random unitary matrices has the form

P2(s) = (32/π2)s2 exp(−4s2/π), (1)

and its variance σ 2
2 = 3π/8−1 ≈ 0.17810. Subscript 2 refers to the parameter, usually called

β in RMT literature, labelling the three Gaussian ensembles: β = 1 for orthogonal, β = 2 for
unitary and β = 4 for symplectic matrices, respectively [1].

It is clear from figures 2 and 3 that at small T , Pζ (s, T ) is rather sharp, narrower and higher
than the asymptotic PGUE(s), the maximum of Pζ (s, T ) decreasing and its width increasing
as zeros of larger imaginary part are computed.

In a recent paper [8], Bogomolny et al have ascribed the difference between the spacing
distribution at finite T and its asymptotic form to a finite-N effect: the finite-T Pζ (s, T )

would thus be the level distribution of some finite-N matrix, and the asymptotic form would be
obtained as N goes to ∞. In fact, Bogomolny et al have argued heuristically that a given ‘height’
T above the real axis corresponds to an effective matrix dimension Neff = ln(T /2π)/(

√
12�),

where � = 1.57314 . . . is a well-defined constant [8]. I shall discuss below what I believe to
be a major drawback of this approach, i.e. its inconsistency with exact results.

An alternative attitude may consist in assuming that the change of Pζ (s, T ) with T follows
that of random matrices whose symmetry is broken at T = 0, and restored as T → ∞.
Specifically, Pζ (s, T ) at small T may correspond to the spacing distribution of eigenvalues of
GUE random matrices whose symmetry is broken by a symplectic (GSE) perturbation. The
imaginary part of the zeros, T, plays thus the role of the ‘strength’ of the GUE component, so
that when T → ∞ the GUE symmetry is fully restored. According to RMT, the ‘height’ T on
the �(z) = 1/2 axis, or some function of it, might then be interpreted as an effective ‘time’;
in this spirit, computing zeros of increasing T would correspond to a time evolution towards
equilibrium; and the asymptotic GUE would be the form of the equilibrium distribution. The
restoring of a broken symmetry is a phenomenon which has long been studied in the framework
of RMT [1, 9]. The Brownian motion model of Dyson is one of the most useful tools for
describing such an effect.

3. Dyson’s Brownian motion model

When constructing RMT, Dyson discovered that the well-known algebraic repulsion between
eigenvalues that characterizes the spectrum of random matrices could be interpreted as coming
from a logarithmic interaction between particles, the latter being the eigenvalues themselves
[1, 6, 9]. Indeed, Dyson realized that the eigenvalue distribution of random matrices is the
time-independent solution of a multi-dimensional Fokker–Planck equation, associated with
the Langevin equations

ẋm = −2βxm + β
∑
i>j

1

xi − xj

+ η (2)

where xm are the eigenvalues (particle positions), β = 1, 2 or 4 is the parameter characterizing
the symmetry of the random matrix and η is a Gaussian distributed white noise. Incidentally,
note that the values 1, 2 and 4 of β do not play any special role in Dyson’s model.

One of the consequences of Dyson’s Brownian motion model is that, once β is fixed in
(2), the distribution of the eigenvalues tends to a stationary form corresponding to that β,
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Figure 4. The difference between the mean-field solution of Dyson’s Brownian motion model for
β = 2, starting from a delta-function distribution at t = 0, and the asymptotic Wigner surmise,
at increasing time t. t increases from top curve (red online) to the lowest one (green online). The
solution is explicitly given in [10].

independently of the initial state [6, 9]. Thus, if β in equation (2) is fixed, say β = 2, and that
the initial distribution corresponds to, say, β = 4, then the eigenvalues evolve in time under
equation (2), and their distribution changes from β = 4 to β = 2.

One of the few exact results known for such transitions is that the variance of the
distribution varies in time as [6]

σ 2(t) = σ 2
0 exp(−t) + σ 2

∞[1 − exp(−t)]. (3)

The inset in figure 3 shows a fit to equation (3) of the variance σ 2(t) of Pζ (s, T ) at various
‘times’ t, assuming t = (log10 T )1/2. The latter choice will be discussed below. The fit is very
good, and is a prima facie evidence for the relevance of the Brownian motion approach.

Exact results for the time evolution in the context of Dyson’s model have been derived
for 2 × 2 matrices [9], as well as for a mean-field variant of equation (2), which is amenable
to an exact solution PMF (s, t) for any time t [10]. The asymptotic, equilibrium solution is in
both cases the Wigner surmise Pβ(s).

As an example, figure 4 exhibits the difference between the solution of the mean-field
model for β = 2 and its asymptotic Wigner distribution P2(s) at different times, when the
initial condition is a delta function centred in s = 1. In this context, a delta function may
be thought of as a Wigner distribution Pβ(s) with β → ∞. One can see that the qualitative
behaviour looks very similar to that of figure 2. An explicit solution has also been found
for the transition between β = 4 and β = 2: it is given in [10], and it contains a Kummer
hypergeometric function which makes it very bad-looking. I prefer to plot in figure 5 the
explicit approximating form

δP4→2(s, t) ≡ PMF (s, t) − P2(s) ≈ [P4(s) − P2(s)] exp(−t). (4)



5898 A Pimpinelli

Figure 5. A plot of equation (4) at different times, increasing from top curve (red online) to lowest
one (orange online).

The right-hand side is indeed an interpolating function that has the merit of giving
equation (3) exactly, since of course PMF (s, t) ≈ P4(s) exp(−t) + P2(s)[1 − exp(−t)], so that
σ 2

MF (t) = σ 2
4 exp(−t) + σ 2

2 [1 − exp(−t)].
It can easily be appreciated that the resemblance between figures 3 and 5 is very strong.

4. A conjecture: the DSZ as a result of a symmetry-restoring transition

I will now make my conjecture explicit: the zeros of the Riemann zeta function are distributed
as the eigenvalues of random matrices of GUE symmetry, submitted to a symmetry-breaking
GSE perturbation:

Pζ (s, t (T )) = PGSE+GUE→GUE(s, t (T )). (5)

The large-T limit corresponds to restoring the GUE symmetry, according to Dyson’s
Brownian motion model.

Starting from this assumption, I will heuristically derive an explicit, analytical
approximation to the DZS Pζ (s, t) as a function of t = t (T ). This approximation will
reproduce the behaviour of figure 3, and yield a parameter-free fit to the moments of the DZS.

A further assumption concerns the fictitious time t . It is commonly conjectured in number
theory that the relation N = ln(T /2π) between matrix size N and imaginary part T, holds.
In Dyson’s model, symmetry is restored when the typical time scale of the fictitious time
evolution is t ∼ √

N . We are then led to assume t ∼ √
ln T . In fact, the numerical evidence

points out that base-10 logarithms are the natural choice (although of course base-e logs are
natural logs)! We conjecture then that the fictitious time is

t = √
log10 T (6)

as far as zeros of the Riemann zeta function are concerned. I have not yet been able to justify
this numerical result.
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Figure 6. Equation (8) compared to the difference between the zero spacing distribution
Pζ (s, T ) and the asymptotic GUE distribution at various T as in figure 2 (see the text for details)
(colour online).

I would expect that the exact zero distribution, Pζ (s, t), alias PGSE+GUE→GUE(s, t (T )),
can be expanded near T → ∞ in powers of exp(−t) about the mean-field distribution:

Pζ (s, t (T )) = PGSE+GUE→GUE(s, t (T )) = PMF (s, t) + O(exp(−2t))

≈ P2(s) + κ{[P4(s) − P2(s)] exp(−t)} + O(exp(−2t)) (7)

where equation (4) has been used. Higher-order contributions, following Bogomolny et al
[8], can be included by a shift in the s variable, s → αs, with α being in principle time-
dependent. As a first approximation, I will take α a constant. Figure 6 exhibits the fit of
δPζ (s, t) = Pζ (s, t) − PGUE(s) (data in figure 2) using the expression

δPζ (s, t) = κ[P4(αs) − P2(αs)] exp(−t)]. (8)

The fit in the figure yields κ = 1.418, α = 0.88 and t = √
log10 T . The agreement is striking,

considering that just two free parameters are employed. An even better agreement is obtained
by making α time-dependent. Heuristically again, I find that

α(t) = exp(−t/29) (9)

yields a very close match to all the numerical data.
But we can try to do more than that. The Wigner surmise for β = 2, P2(s), is the

asymptotic solution of equation (2) in mean field. As such, the actual level distribution for
random unitary matrices, PGUE(s), may be written as

PGUE(s) = P2(s) + δPGUE(s). (10)

Looking at figure 2, one sees that the variance of Pζ (s, t) attains the value of the one of
the Wigner surmise at T about 2 × 1019. Thus, I expect that Pζ (s, t) = P2(s) at this height. In
other words, I expect that

Pζ (s, t) = P2(s) + δPGUE(s) exp(−t0) + κ[P4(αs) − P2(αs)] exp(−t), (11)

with δPGUE(s) and t0 such that

δPGUE(s) exp(−t0) = −κ[P4(αs) − P2(αs)] exp(−t0). (12)
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Figure 7. A comparison of the first three non-trivial moments of Pζ (s, T ) computed with the
approximate form (14), with the values computed in [7] (colour online).

An inspection of figure 4.2 of Haake’s book [9] shows that δPGUE(s) has indeed the same
general shape as δPζ (s, t) for a given t.

As a result, we have an analytic approximation to the whole distribution of zero spacing
for the Riemann zeta function, valid at all T:

Pζ (s, t) = P2(s) + κ ′{P2(αs) − P4(αs)][1 − exp(−[t − t0])}, (13)

where κ ′ = κ exp(−t0), t = √
log10 T .

This analytic expression allows us to compute explicitly the various moments of Pζ (s, t)

as a function of t (T ). They are immediately available from the moments of the Wigner surmise
for β = 2 and 4. The general expression of the nth moment as a function of t reads:

〈sn〉ζ (t) = 〈sn〉2 +
κ ′

αn+1
{〈sn〉2 − 〈sn〉4][1 − exp(−[t − t0])}

=
(

π

4

) n−1
2




(
3 + n

2

)
+

κ ′

αn+1

[(
π

4

) n−1
2




(
3 + n

2

)

− 2−n

(
9π

16

) n−1
2




(
5 + n

2

)]
[1 − exp(−[t − t0])]. (14)

The second, third and fourth moments are plotted in figure 7, with α = 0.884 56, κ ′ =
0.016 and t0 = 4.38. The computed values are compared with the results of Gourdon: once
more, the agreement is very satisfactory, even though no automatic best-fitting procedure is
involved.

5. Discussion and conclusions

I mentioned that an alternative, more orthodox approach has been taken by Bogomolny et al [8].
They assume that corrections to the asymptotics must be looked for in the difference between
the universal (N → ∞) and the finite-N distribution of levels of random matrices. I will
briefly summarize their argument, using their own notation throughout. Firstly, they expand a
conjectural expression for the two-point correlation functions for the zeros of the Riemann zeta
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Figure 8. A comparison of equation (8) with figure (2) of [8]. The fit with equation (8) yields a
thin curve (red online) nearly indistinguishable from the results of [8]. See the text for details.

function in inverse powers of the average density of zeros, ρ̄ = 1/(2π) ln(T /2π). They find
that the expansion equals the leading term, which is O(1), plus corrections O(ρ̄−2). Secondly,
they expand the finite-N expression for the two-level correlation function for unitary random
matrices. They find that the expansion starts with the leading term, the same as for the
Riemann zeros, plus corrections proportional to powers of 1/N2. By comparing the two
expansions, they conclude that the two-point correlation functions of Riemann zeros and of
eigenvalues of random unitary matrices, respectively, can be mapped into each other by letting
Neff = ln(T /2π)/(

√
12�), as anticipated in the introduction.

Finally, they argue that this holds for all correlation functions, and thus for the spacing
distribution. The correction to the leading term of Pζ (s, t) is then found as

δp(s) = 1
/
N2

effp
(CUE)
1 (αs) (15)

where the superscript CUE stems from the use of the circular unitary ensemble. The factor α

in the argument of p
(CUE)
1 is a function of T that allows one to effectively incorporate higher-

order terms. The correction δp(s) is found numerically as the large-N limit of the difference
between the finite-N distribution, p(CUEN )(s) and the universal distribution p0(s), times N2:

p
(CUE)
1 (s) = lim

N→∞
N2[p(CUEN )(s) − p0(s)]. (16)

The type of result that they find is reproduced in figures 8 and 9, at T = 2.504 × 1015

and T = 1.3066 × 1022, respectively, together with a fit with my conjectured formula
equation (8) with t = 3.66 and t = 4.4, respectively (α = 0.859 in both cases). Bogomolny
et al prediction essentially coincides with mine, equation (8) being much simpler and
analytical.

Besides the quality of fits, one further point seems worth of consideration. Figure 7
shows that the second, third and fourth moments of Pζ (s, t) are very close to the corresponding
moments of the Wigner surmise when T ≈ 2 × 1019. We conclude therefore that
Pζ (s, t) = P2(s) for t ≈ 4.38. We know that P2(s) is the exact level distribution for a
2 × 2 unitary matrix, so that one might expect that Neff ≈ 2 in this case, whilst Neff ≈ 10.
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Figure 9. A comparison of equation (8) with figure (3) of [8]. The fit with equation (8) yields a
thin curve (red online) nearly indistinguishable from the results of [8]. See the text for details.

Moreover, the Pζ (s, t) at small T cannot be interpreted as the level distributions of N × N

random unitary matrices, since Pζ (s, t) has a smaller variance than P2(s), implying that
Neff < 2, which is meaningless.

The effective matrix dimension of Bogomolny et al seems therefore difficult to be given a
precise meaning. Their approach looks inconsistent, since it describes a spacing distribution
indistinguishable from that of a 2×2 matrix, as the level distribution of a much larger, 10×10,
matrix.

The approach proposed here, in which the corrections to the asymptotic form of the zero
spacing distribution are treated as resulting from the time evolution of an ensemble of matrices
with a broken symmetry, the latter being restored as T → ∞, does not suffer from similar
inconsistencies.

Moreover, by relying on the results of a mean-field solution of the symmetry-restoring
evolution, the present approach allows us to conjecture a very simple heuristic analytic formula,
which is able to capture many fine details, including the evolution of the moments of the
distribution with increasing imaginary part T of the zeros.
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